Ultra-low power PSK backscatter modulator for UHF and microwave RFID transponders

G. De Vita, F. Bellatalla, G. Iannaccone *

Dipartimento di Ingegneria dell’Informazione, Università di Pisa, Via Caruso I-56122 Pisa, Italy

Received 13 June 2005; received in revised form 29 July 2005; accepted 16 September 2005
Available online 23 November 2005

Abstract

An integrated circuit implementation of a PSK backscatter modulator for passive radio frequency identification (RFID) transponders is proposed. Such modulator offers a significant reduction of the power consumption with respect to other schemes already presented in the literature. Furthermore, the topology of the proposed modulator allows us to control its output resistance so that only a negligible fraction of the active power at the antenna goes to the modulator.

© 2005 Elsevier Ltd. All rights reserved.

Keywords: Backscatter modulation; Transponder; RFID; Low power

1. Introduction

RFID systems with passive transponders typically use modulation of the backscattered radiation for the downlink (transponder-to-reader) since it eliminates the need for the transponder to provide the power of the signal to be transmitted. Among possible backscatter modulations, BPSK allows the realization of a very simple transmitter, and is to be preferred even to ASK, since it ensures, for a given modulation depth, a larger power transferred to the transponder, that is the critical quantity limiting the range of passive systems [1]. Furthermore, such modulation allows constant power supply to the transponder.

The PSK backscatter modulation consists in modulating the imaginary part of the impedance seen by the antenna, in order to vary the phase of the reflected wave, and is usually obtained by varying a capacitive impedance. Few solutions have been presented in the literature [1,2] to perform a PSK backscatter modulation. The most important requirements for such modulators are low power consumption, since they are used in passive systems, and small area occupation on the chip to maintain their cost as low as possible. In this letter we present a PSK backscatter modulator with small power consumption and area compared to other modulator schemes presented in the literature.

2. Circuit description

The scheme of the proposed modulator is shown in Fig. 1. Transistor M1 is a MOS varactor that operates in inversion or in cutoff, depending on the input signal, causing the variation of the capacitance seen at the output of the modulator. Transistor M2, instead, does not affect the output capacitance, since it has a small width with respect to M1, but determines the resistance at the output of the modulator, which is, essentially, its drain-source resistance. As a consequence, the channel length of M2 has to be large enough so that the output resistance of the modulator is much larger than the antenna resistance. Such choice ensures that only a negligible fraction of the power at the antenna goes to the modulator, as required for the correct operation of the transponder. C_{OUT} is the capacitance seen at the output of the modulator and is due to the interconnections, the antenna and the input capacitance of the other stages which the modulator is connected to. As it will be clearer later, the capacitance C_{IN} has to be larger than the gate-source and gate-drain capacitance of M1, in order not to degrade the variation of the output capacitance of the modulator. Once the value of C_{IN} is chosen, as previously described, the two transistors M3 and M4 of the inverter have to be dimensioned to fix the switching time of the varactor so that the channel bandwidth occupation of the backscattered signal complies with the requirements set by the standard. Referring to Fig. 1 and to the BSIM3v3...
where \(C \) the power with respect to \(M_1 \) are always pulled down to ground, we do not need to period of the input signal, since the drain and the source of \(M_1 \) are proportional to the channel width, for a given modulation depth. Since all the capacitances of \(C \) consumption as small as possible, the value of the capacitor systems it is very important to maintain the power consumption when modulating. Since in passive RFID maximises the modulation depth but leads to a high power transistor model \[3\], the output capacitance, \(C_V \), of the modulator is given by,

\[
C_V = C_{DB} + C_{JD} + C_{JS} + C_{DM2} + (C_{GS} + C_{GD})||\left[C_{IN} + C_{GB} + C_{INV} \right],
\]

(1)

where \(C_{XY} \) is the capacitance seen between the terminals \(X \) and \(Y \) of \(M_4 \), \(C_{JD} \) and \(C_{JS} \) are the drain–bulk and source–bulk junction capacitances, \(C_{DM2} \) is the capacitance seen from the drain of \(M_2 \) to ground, \(C_{INV} \) is the capacitance seen from the output of the inverter formed by \(M_3 \) and \(M_4 \). When the input signal varies, only the capacitances \(C_{GS}\), \(C_{GD}\), \(C_{DB} \) and \(C_{GB} \) remain constant. Thus, it is clear that, if \(C_{IN} \) is not sufficiently larger than \(C_{GS} \) and \(C_{GD} \), the variation of the output capacitance is drastically reduced, since it predominantly depends upon the gate-source and gate-drain capacitances. In such condition, the variation \(\Delta C \) of the output capacitance of the modulator can be well approximated as:

\[
\Delta C \equiv C_{DB} + (C_{GS} + C_{GD})||\left[C_{IN} - (C_{GSov} + C_{GDov}) \right]||C_{IN}
\]

(2)

where \(C_{GDov} \) and \(C_{GSov} \) are the overlap gate-drain and gate-source capacitances of \(M_1 \). Referring to Fig. 1, in each period of the input signal, since the drain and the source of \(M_1 \) are always pulled down to ground, we do not need to charge and discharge the output capacitance and the equivalent drain-ground and source-ground capacitances. Thus, the power \(P_{MOD} \) dissipated by the modulator is given by:

\[
P_{MOD} \equiv (C_{GS} + C_{GD} + C_{IN})V_{DD}^2
\]

(3)

From (2) it is clear that the choice \(C_{IN} > > C_{GS} + C_{GD} \) maximises the modulation depth but leads to a high power consumption when modulating. Since in passive RFID systems it is very important to maintain the power consumption as small as possible, the value of the capacitor \(C_{IN} \) has to be chosen as to minimize the power consumption for a given modulation depth. Since all the capacitances of \(M_1 \) are proportional to the channel width, \(W \), of \(M_1 \), therefore from (2), for a given modulation depth, we can derive \(W(C_{IN}) \). Substituting such relation in (3) and deriving the power with respect to \(C_{IN} \), we can find the value of \(C_{IN} \) that allow us to minimize the power consumption and that ensures the modulation depth previously fixed.

3. Comparison with other topologies

Now, we can compare the performances of the proposed modulator with that of two other schemes appeared in the literature, on the basis of an implementation with a typical 0.35 \(\mu \)m CMOS process from AMS, and a supply voltage of 0.6 V, compatible with subthreshold operation of the digital section. In the modulator shown in Fig. 2a \[2\], the capacitor \(C_{MOD} \) is dimensioned to obtain the desired variation \(\Delta C \) of the output capacitance. The great disadvantage of such scheme is the area occupation on the chip, especially when a very low supply voltage is used, as can happen in passive RFID systems. From Fig. 3 it is possible to verify that the area occupation on the chip of the modulator, shown in Fig. 2a, is much larger than that one of the proposed modulator. The modulator shown in Fig. 2b is a modified version of that proposed in \[1\]: here the modulation is obtained by exploiting the output capacitance of the inverter formed by \(M_1 \) and \(M_4 \) rather than the capacitance of a varicap placed between the input and the output of the inverter, as done in \[1\]. In such a way, although the operation principle is not changed, we have a reduced number of components (two inverters and one of the two coupling capacitors are removed) and therefore a reduced power consumption and area occupation for the same modulation depth. Anyway, also with such improvement, the modulator shown in Fig. 2b occupies an

![Fig. 1. Scheme of the proposed PSK backscatter modulator.](https://example.com/fig1)

![Fig. 2. Schemes of the comparison PSK backscatter modulators: (a) from [2]; (b) modified from [1].](https://example.com/fig2)

![Fig. 3. Area occupation on the chip vs. modulation of the output capacitance \(\Delta C \).](https://example.com/fig3)
area on the chip between two and three times larger than our modulator, as can be seen in Fig. 3. In such modulator transistors M₁ and M₄ determine the output capacitance while M₂ and M₃ allow us to increase the output resistance of the modulator. In order to obtain a given modulation of the output capacitance and minimum area occupation, M₁ must have minimum width while M₄ is dimensioned to obtain the desired ΔC. Transistors M₂ and M₃ have minimum width, in order to obtain a large output resistance in both states. The great disadvantage is that the capacitance seen at the output of the modulator has to be charged and discharged in each period of the input signal; as a consequence the power consumption for a given variation of the output capacitance of the modulator shown in Fig. 2b is much larger than that of the proposed modulator, as can be seen in Fig. 4. Similar conclusions are drawn also from comparison at higher supply voltages.

The choice of ΔC must be done in order to maximize the operating range, achieving a trade off between minimum probability of error at the reader and maximum power transfer to the transponder. Analysis show that a range of 4 m can be achieved at 2.45 GHz with $\Delta C = 130 \, \text{fF}$ and a range of 10.5 m can be achieved at 868 MHz with $\Delta C = 174 \, \text{fF}$, for a data rate of 40 kbps and a DC power consumption of the transponder of 1 μW [4].

4. Conclusion

An ultra-low power PSK backscatter modulator for long range passive RFID systems has been proposed. It can be fully integrated, using a low-cost CMOS IC technology, with a smaller area occupation and power consumption with respect to other solutions proposed in the literature.

Acknowledgements

This work has been supported by Fondazione Cassa di Risparmio di Pisa.

References